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Given an amalgam of groups 

Go..~ G2 

then every quantum logic Qo = (Lo, Mo) (Lo is a o--orthomodular poset, M 0 is 
a full set of states on it) satisfying some reasonable conditions can be embedded 
in a quantum logic Q = (L, M), in which (1) all the automorphisms of L form 
a group =G1,  (2) all the automorphisms of M form a group ~G2,  and (3) all 
the symmetries of Q form a group = G o . The quantum logic of all closed subspaces 
of a Hilbert space H and all its measures satisfies the conditions required from 
Qo; hence, enlarging it, one can obtain "anything." 

1. I N T R O D U C T I O N  AND T H E  MAIN T H E O R E M  

Every abstract group can be represented as the group of  all automorph-  
isms of an or thomodular  lattice. This result of  Kalmbach (1984) was enriched 
by the investigation of states in Kallus and Trnkovfi (1987), where collections 
of  quantum logics with some prescribed properties (representing prescribed 
groups by their symmetries and a prescribed order on the index set by the 
embeddabili ty) were constructed. 

Here, I investigate symmetries of  quantum logics, automorphisms of 
the corresponding cr-orthomodular posers and the bijections of  the set of  
states, preserving all the o--convex combinations. I show that their connec- 
tions are rather free in general; then can represent any amalgam of groups. 

First, recall the appropriate  names and notions. A quantum logic is a 
pair Q = (L, M) ,  where L is a o--orthomodularposet [i.e., a partial order -< 
on L and a complementat ion ': L--> L are given such that L has the smallest 
element 0, the largest element 1, 0 ~ 1, and (p ' ) '  = p, p v p '  = 1, p ^ p '  = 0 for 
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1196 Trnkovfi 

all p c L, p -< q iff p' ~ q', p -< q implies q = p v (q ^ p'); moreover, if pl,  P2, �9 �9 �9 

is a sequence of pairwise orthogonal elements, i.e., p~ -< p~ for i # j ,  then the 
join V~=1 p, exists in L] and M is a or-convex full set of states on L [i.e., 
each m 6 M is a map of L into (0, 1) such that m(0) = 0, m(p') = 1 - m(p),  
and m(V n~__l pn) = Y.n~_- 1 m(p , )  whenever pl ,  P2 , - . .  is a sequence of pairwise 
orthogonal elements; moreover, M is closed under the forming of  o--convex 
combinations, i.e., for any sequence {a,} of real numbers and {m,} of  states, 

a,->O and a n = l  ~ ~ a~mn~M 
n = l  n = l  

and M is full in the sense that it determines the order of L, i.e., for every 
p, q c L, 

V m c M  m(p)<-m(q) ~ p<--q] 

A sublogic Qo(Lo, Mo) of a quantum logic Q = (L, M)  is determined by a 
one-to-one strong homomorphism h: Lo ~ L [i.e., x -< y in Lo iff h(x) <- h(y) 
in L, h preserves O, complements, and the joins of  pairwise orthogonal 
sequences] such that 

{mo h lm~  M}= Mo 

(i.e., L is an enlarging of L0 and each state in M0 is extended to L, not 
necessarily in a unique way; the set of these extensions is the state set M);  
clearly, the map 

/~: M ~  Mo 

given by /~(m) = m o h which is required to be surjective by our definition, 
preserves the o--convex combinations. We say that Qo can be embedded in 
Q if it is its sublogic in the above sense. 

A symmetry of a quantum logic Q = (L, M) (Pulmannov~, 1977) is any 
automorphism r: L ~  L for which 

{mo "clm ~ M}= M 

Clearly, all the symmetries of  Q form a group; let us denote it by Aut Q. 
It is a subgroup of the group Aut L of all the automorphisms of L. The 
third group investigated here, associated with the quantum logic Q = (L, M),  
is the group of all the bijections 

b: M ~ M  

which preserve the o--convex combinations, i.e., 

whenever m . ~ M ,  a . - -O,  ~ a . = l  
n = l  
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Let us denote the last group by Aut M. 
The preservation of the o--convex combinations is equivalent to the 

preservation of  the convex combinations,  so that the elements of  Aut M 
are the stochastic symmetries in the sense of Cook and Riittimann (1985). 
These three groups form an amalgam in a natural way, namely 

Aut L 

Aut v 

Aut M 

where i is the inclusion map and the one-to-one homomorphism K is given 
by the formula 

[ K ( r ) ] ( m ) =  m o r -1 for all m ~  M 

Are there any other general relations among these groups? I prove here 
that the answer to this question is negative: any amalgam of groups 

hi / G1 

s~: GOh/2~_ 

(/2 

(i.e., Go, G~, and G2 are arbitrary abstract groups, h I and h2 are one-to-one 
homomorphisms)  can be realized by a quantum logic Q = (L, M), in the 
sense that there exist isomorphisms 

q~o of  Go onto Aut Q 
qbl of  G1 onto Aut L 
qb2 of G2 onto Aut M 

such that i o qb 0 = ~1 ~ hi and K o go = ~2 ~ h2. This is the first statement of  
our main theorem. Moreover,  a quantum logic realizing a given amalgam 

can be constructed such that it contains a given quantum logic Qo= 
(Lo, Mo) (satisfying some conditions) as its sublogic--this  shows that in 
fact a given amalgam can be realized in many distinct ways; or, on the 
other hand, that the quantum logic Qo = (Lo, Mo) can be enlarged such that 
one obtains a previously prescribed amalgam. 

Before the formulation of  the Main Theorem, recall that a tro 
or thomodular  poset Lo is called atomist if each I e Lo is a join of  the set of  
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all atoms a e L o  with a_<l; and a state m e m o  is called pure if m =  
a m l + ( 1 - a ) m 2  with 0 <  a < 1 implies m l =  m2 = m. 

Main Theorem. Let Qo = (Mo, Lo) be a quantum logic such that Lo is 
atomistic and Mo satisfies the following conditions: 

( a )  Every state in Mo is a o--convex combination of pure states. 
(/3) For every ordered pair a, b of distinct atoms of Lo there exists a 

state m e Mo with m(a)  = 1 > m(b) .  
(y) There exists a collection {s~ l a e A} of pure states of  Mo, where A 

is the set of all atoms of Lo, such that (i) (Va e A)(s~(a) = 0); (ii) 
s a ( b ) + s b ( s ) < 2  for every a, b e A ,  a ~ b. 

Then every amalgam of groups can be realized by a quantum logic Q = 
(L, M) ,  containing Qo as a sublogic. Moreover,  L is also atomistic and if 
L0 is a lattice or or-complete lattice or a complete lattice, so is L. 

Remark. The quantum logic Qo = (Lo, Mo) of all closed subspaces of  
a separable complex Hilbert space H with dim >-3 and all the or-additive 
probabilities satisfies the requirements of  the Main Theorem. It is well 
known that Lo is atomistic and (a) ,  (/3) follow immediately from Gleason's  
theorem. However,  the condition (y) also follows from Gleason's  theorem: 
it suffices only to find a map A: A ~  A without 2-cycles such that a a n d  
A (a)  are always orthogonal [since dim H >- 3, for every a �9 A the set O(a)  c_ 
A of all atoms orthogonal to a is large enough: card O(a)  = 2~0; this makes 
it possible to construct such A by the transfinite induction] and put sa = q ~ ) ,  
where qb is the pure state associated to the atom b. This is presented in 
Trnkov~ (1988), where also the Main Theorem was announced. The proof  
of  the Main Theorem appears for first time here. It is rather involved and 
it uses some graph-theoretic techniques. The most involved part of  the proof  
is the construction of an embedding of the given quantum logic Qo into a 
rigid one. 

2. Q U A N T U M  L O G I C S  D E T E R M I N E D  BY GRAPHS 

1. Let us denote by (~ the class of all undirected graphs (V, E)  (i.e., 
V is the set of  its vertices, not necessarily finite, E is the set of its edges, 
i.e., each e E E is a two-element subset of V) which are: 

Without triangles (i.e., if x, y, z e V, then at least one of the edges {x, y}, 
{y, z}, {z, x} is not in E). 

Without squares (i.e., if x, y, z, v e V, then at least orie of  the edges 
{x, y}, {y, z}, {z, v}, {v, x} is not in E). 

O f  deg x >- 2 for all x e V (i.e., there exist distinct y, z e V with {x, y}, 
{x, z} c E). 

O f  card V>_ 5 and for each x e V there exists y e V \{x}  with {x, y}~ E. 
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As is well known (see. e.g., Kalmbach, 1983), every G = (V, E) deter- 
mines an orthomodular lattice L(G) as follows: each edge e = {x, y} ~ E is 
cut into two edges and the obtained undirected graph is the Greechie 
diagram (Kalmbach, 1983) of  L(G). Informally, each edge e = {x, y} ~ E is 
replaced by a copy of these Boolean algebra 2 3 with three atoms x, y, x' ^ y';  
in all these Boolean algebras 0 and 1 are identified and, moreover, if two 
edges e, ~ ~ E have a vertex x in common, say e = {x, y}, ~ = {x, fi}, the 
corresponding Boolean algebras have the atom x and the coatom x'  in 
common. Since G = ( V, E) has no triangles and no squares, L(G) is really 
an orthomodular lattice (Kalmbach, 1983). All the Boolean blocks 
[=maximal  Boolean algebras; see Kalmbach (1983)] of L(G) are isomor- 
phic to 2 3. In the convention that x, y, x' ^ y '  are atoms of the Boolean block 
corresponding to e = {x, y}, we may suppose that 

Vc_L(G).  

Let us ,call each x c V a vertex of  L( G) and each x' a covertex of  L( G). 

2. We say that a Boolean block B of a ~r-orthomodular poset L is clear 
(Kallus and Trnkovfi, 1987) if there exists an atom a ~ B such that there 
exists precisely two distinct elements of L\{ 1}, say al,  a2 with a < al,  a < a2; 
then the atom a with this property is called clear, too. 

If  G = (V, E ) c  N, then each Boolean block of L(G) is clear, the clear 
atom of the block corresponding to {x, y} ~ E is x' A y', the covertices x', y' 
are the only elements of L(G)\{1} dominating it. Since deg x-> 2 for each 
x ~ V, no x is a clear atom [in fact, if {x, y} and {x,)5} are distinct edges 
having the vertex x in common, then x v y, x v y, y',  )~' are distinct elements 
of  L(G) dominating x]. 

Every automorphism ,/ of G determines uniquely the automorphism 
L(7) of L(G) extending it, i.e., 

[L(y)] (x)= 7(x) for all x~ V 

because then, necessarily, [L(~)](x ' )  = (~,(x))', [ L( y ) ]( x v y) = 7( x ) v ~/(y ), 
and [L(y)] (x ' ^  y') = (y (x ) ) ' ^  (y(y)) '  for all {x, y} ~ E and 0 and 1 are fixed 
points of  L(y).  

Conversely, if ~" is an automorphism of L(G),  then, necessarily, r =  
L(y)  for some automorphism y of G. In fact, ~" sends the set of all clear 
atoms onto itself and the set of all the remaining atoms also onto itself. 
This implies that the domain-range restriction of  ~- maps bijectively V onto 
itself and, since ~" maps each Boolean block onto a Boolean block, this 
restriction is an automorphism of G. We conclude that the groups Aut G 
and Aut L(G)  are isomorphic, the isomorphism is given by 

y ,,~ L(y) 

and the inverse isomorphism is the domain-range restriction only. 
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3. Let G=(V ,E)  be in (~, let m: L(G)~(O, 1) be a state, i.e., 

m(0) =0 ,  m ( 1 ) = l  

m ( x ' ) = l - m ( x )  for each x 6 V  (1) 

m(xvy )=m(x )+m(y ) ,  m(x 'Ay ' )= l - [m(x )+m(y)]  

for each {x, y} ~ E 

Thus, the state m is determined by its values m(x) with x c  V, the values 
at 0, 1 x', x v y, X'A y '  are given by equations (1). Clearly, 

a map m: V ~ ( 0 ,  1) determine a state on L(G) 
(2) 

iff m(x)+m(y)<-I for all {x ,y}~E 

Let 1 be an independent set of the graph G = ( V, E) ~ (~ (i.e., I ___ V and 
never {x, y} �9 E for x, y �9 1). Then the state ml is defined by 

mx (x) = 1 if x �9 I 

m1(x) = 0  i f x ~  V\ I  

(i.e., its restriction to V is the characteristic function gr of  I in V). Since 
Xr satisfies (2), m~ is really a state. 

Observation. For each independent set ! of  G, mr is a pure state on 
L(G). (In fact, every two-valued state is a pure state.) 

4. Let ~ and G = ( V , E ) � 9  L(G) be as in Sections 2.1-2.3. Let J 
be the set of  all independent sets of  G and, for each I E J ,  let m~ be the 
state as in Section 2.3. We say that 3 - _  J is a full system of independent  
sets of  G if 

Q�9 {x}~3-  for a l l x � 9  and 

for every x, y �9 V with {x, y} ~ E there exists I ~ 3- (3) 

such that {x, y} ~_ I 

Lemma. Let 3~_ fl  be a full system of  independent sets of  G. Then 
P~ = {ml I I e 3} is a full set of  states on L(G) .  

Proof. I f  a, b ~ L(G), then 

a ~ b  ~ (3 Ie~ ) (m , (a )= l>O=mt(b ) )  

This can be proved by a staightforward verification discussing all the possible 
cases. We show, e.g., the example when a is a vertex and b = x ' ^  y '  for 
vertices x, y with {x, y} ~ E: if a ~ {x, Y}, then m~a~(a) = 1 > 0 = m ~ ( b ) ;  if 
a ~ {x, y}, then (since G does not contain triangles) either {a, x}~ E or 
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{a, y} ~ E; then there exists I e 3- such that either {a, x } _  I or {a, y} _ I, 
hence ml(a) = 1 > 0 = m1(b). �9 

5. Let G = (V, E)  e (B, and let J be the set of all independent sets of 
G. We say that 3-___J is invariant if for every y e A u t  G, the system 
y g  = {y(I )  I I e 3-} is equal to W. 

Let y e A u t  G; denote ~-= L ( y ) e A u t  L(G). Clearly, 

--1 
m • ( l  ) .~ m l  o 7" 

Hence, if 3- c J is invariant, then 

{m, l i e  g } = { m ,  o z - l l I  e ~ 

for every y e Aut G, "c = L( T) e Aut L( G). 

6. Let G = ( V ,  E ) e ~ , p u t  3-(G)={fg}w{{x}lxe  V}u{{x,y}]x,  y e  V, 
{x, y} ~ E}. Clearly, 3-(G) is an invariant full system of independent subsets 
of G. Put 

P(G) ={m, lie 3-(G)} 
and denote by M(G) the o--convex envelope of P(G). Then 

Q ( G ) = ( L ( G ) , M ( G ) )  

is a quantum logic; P(G) is precisely the set of all pure states of Q(G). 
Moreover, for every r e Aut L(G), 

{mo r - l i m e  M ( G ) } = M ( G )  

so that each z e A u t ( L ( G ) )  is already a symmetry of the quantum logic 
Q(G). Hence, we see that, in the amalgam, 

Aut(L(G))  

Aut Q( G ) (  

Nut M ( G) 

The inclusion i is the identity. Now, we show that K is also surjective. 

7. Proposition. Let G = ( V ,  E)  be in (~, and let b e A u t M ( G ) .  Then 
there exists r e  Aut L(G) such that 

b(m) = m o r -l for all m e M(G) 

Proof I present here an elementary proof, which is instructive also for 
the proofs in the next parts. 
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(i) Since P ( G )  is the set o f  all pure  states of  M ( G ) ,  b maps  P ( G )  
onto itself. Hence ,  there is a bi ject ion B of  ~ - (G)  onto itself such that,  for  
all I e 3--(G),  

b ( m l )  = mBl 

To prove  the Proposi t ion,  it suffices to show that  

B~b = 

B{x}  is a one-poin t  set, say {JT} (4) 

B{x, y} = {~, fi} 

In fact, then B determines  a bijection 7 of  V onto  itself by the rule 

~,(x) = x  

Moreover ,  if{x, y} ~ E, then  {3'(x), y(y)} ~ E. On the other  hand,  if  {)~, )7} ~ E, 
then there is I e 3 - (G)  with B1 = {s )7} because  B is surjective. Then  (4) 
implies  that  I has precisely two elements  and I ~ E, so that  

{)~,fi}~E ~ { 7 - ' ( x ) ,  3 ' - ' ( y ) } ~  E 

Thus,  y is an a u t o m o r p h i s m  o f  G. Clearly,  r = L(~/) satisfies b ( m l )  = rnBl = 
rni o r -1 for  all I ~ 3-(G) .  Since b preserves  the o--convex combina t ions ,  we 
have  

b ( m )  = m o 3 "-1 for all m ~ M ( G )  

(ii) Thus,  it suffices to p rove  (4). First, we show that  B& - - Q .  Let us 
suppose  the contrary;  let z~  B4~. For  any x, y ~ V, x # y ,  {x, y}~ E, we have 

1 1 1 1 ~m{x} + $m{y} -- ~mlx ,y  } + ~m4, ( 5 )  

so that,  since b preserves  this convex combina t ion ,  

1 1 1 5roB{x} + ~mB{y} = ~rnB{x,y} + �89 (6) 

Since rnB4,(z) = 1, necessari ly z e B{x}  or z e B{y}.  Hence,  if x, y are distinct 
vertices o f  G such that  z ~ B{x}  and z ~ B{y}, necessari ly {x, y} e E. Since 
G = ( V, E )  contains  no triangle,  necessari ly z e B(x i )  for  some xi f rom each 
triple xl ,  x2, x3 of  distinct vertices of  G. Since card V-> 5, there are at least 
three distinct vertices Yl, y2, Y3 such that  z< B{yi} for  all i = 1, 2, 3. Since 
G contains  no triangle,  there  exist such x, y e {y~, Y2, Y3} that  {x, y} { E. 
Hence,  we have const ructed a couple  x, y of  distinct vertices of  G such that  

z ~ B{y},  z e B{y} and {x, y} ~ E 

Then  equa t ion  (6) implies  that  z c B{x, y}. Since B is a bijection,  B{x},  
B{y},  and Bq~ are four  distinct elements  of  3 - (G)  and  equat ion  (6) implies 
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B{x}w B{y}= B{x, y}w Bck. The elements of  J - (G)  are subsets of  V with 
at most two elements and the couple x, y was constructed such that the 
vertex z, which was supposed to be in B~, is also in B{x}, B{y}, B{x, y}. 
Hence B{x}, B{y}, B{x, y}, and B~b cannot be distinct, which is a contradic- 
tion. Consequently,  B~b = ~ .  

(iii) Now, we finish the proof  of  (4). Equation (6) and B~b = Q imply 
that for every pair x, y of  distinct vertices x, y with {x, y}~ E we have 
B{x} w B{y} = B{x, y}. Since B is a one-to-one map, B{x}, B{y}, and B{x, y} 
are three distinct elements of  3-(G),  so that necessarily B{x} = {g}, B{y} = 
)7}, and B{x, y} = {~, 37} for some distinct if, )7 e V with {~, )7} ~ E. Since, for 
every x e V, there exists distinct y e V with {x, y} ~ E (see the definition of  

in Section 2.1), the vertex ~ is determined for each x e V. [] 

3. Q U A N T U M  L O G I C S  R E A L I Z I N G  A GIVEN AMALGAM 

1. Let an amalgam of groups 

h2/(~ 1 
sO: Go / 

G2 

be given. Since we work with it up to isomorphism, we may suppose (see, 
e.g., Kurosh, 1957) that the amalgam is formed by subgroups of a group 
G, and h~ and h2 are inclusions, say 

G 1 ___ G ,  G 2 ~ G, Go = G1 n G 2 

We are going to realize ~/ by a quantum logic in the sense of  Section 1. 
The quantum logic Q will be consructed based on the following data: 

three undirected graphs H = ( W, E ), H1 = ( W, El), 142 = ( W, E2) on 
the same set of  vertices W, all of  them in ~ ,  and a set J___ W 

such that all the following statements are satisfied: 

(a) Ec_EIC_E2. 
(b) Aut Hi C Aut H for i--- 1, 2. 
(c) There is an isomorphism �9 of  G onto Aut H, which sends Gi onto 

Aut Hi for both i = 1, 2. 
(d) J is an independent  set of  H1, card J-> 5 and 

(i) {x,y}~E2\E~ ~ { x , y } c J  
(ii) 3' e Aut H~ ~ Aut H2 ~ y ( J )  = J 

(e) No H, H1, /-/2 contains a 7-cycle. 
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All the graphs H, H~, /-/2 have the same set of vertices W, hence Aut H, 
Aut H1, Aut/42 all are subgroups of the group of all permutations of W, 
so that (b) is meaningful. Since, by (c), �9 sends Gi onto Aut Hi for both 
i = 1, 2, it sends Go = G~ n G2 onto Aut H~ n Aut H2. 

The graphs H, H~,/-/2 and J _c W which satisfy all these requirements 
(a)-(e) are constructed in the Appendix. The property (e) is not used in 
this section, but it will be used in Section 4. 

2. For each of the graphs H, H~, H2 we have the o--orthomodular 
lattices L(H), L(HO, L(H2). They have the same set of vertices and 
covertices Section 2.1); they differ only in the forming of x v y and x ' ^  y'. 
Since E ~ E~ C E2, we have 

L( H) c_ L(H1) C L( H2) 

Every automorphism of  each of  them is of the form L(7),  where 3' is an 
automorphism of the corresponding graph; see Section 2.2. By (b) and (c), 
there exists an isomorphism �9 of G onto Aut L(H) which sends Gi precisely 
on the group of the automorphisms of L(H) extendable on L(H1), i = 1, 2 
(the such an extension is unique because H and Hi have the same set of 
vertices !). Notice that z e Aut L (H)  extendable to L(/-/2) can be unextend- 
able to L(HI) because the restrictions of elements of Aut L(H2) need not 
be automorphisms of  L(H1). On the other hand, the restriction of any 
r e  Aut L(H~) to L(H) is in Aut L(H). This follows from assumption (b): 

Hence 

Aut H~ ~ Aut H 

{z e Aut L ( H ) [ r  is extendable both to L(H~) and to L(H2)} 

= { r e  Aut L(H1)[r is extendable to L(H2)} 

Hence the isomorphism qb of G onto Aut L(H) determines three isomorph- 
isms qbo, ~1, and ~2 such that the following diagram commutes: 

J C b O  
C/o ~ { r e  Aut L(H~)Ir is extendable to L(H2)} 

G2 Aut L(H2) 

(7) 

In (7), il, i2, and el are the inclusions, and e2(7 ) is the unique extension 
of r. Moreover, if z e Aut L(H~) is extendable to L(H2), its restriction to 
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L(H) is of  the form L(y) ,  where y ~ Aut  Hi  c~ Aut/-/2, so that 

T(J) = J (8) 

by (d). 

3. Since L(H1)G L(H2) and L(H,)  and L(H2) have the same set of  
vertices, the restriction of  any state m: L(J2)-->(O, 1) to L(HO is a state on 
L(H,)  (se Section 2.3). Denote by P+ the set of  all the restrictions ~ /L(H1) ,  
where m ~ P(H2). Then we have isomorphisms 

Aut L(H2) K , Aut M(H2)  r > Aut M + (9) 

where M + is a o--convex envelope of P+, ~r is the canonical isomorphism 
given by the formula [K(z) ] (m)  = m o ~.-1, and r(~') sends each m/L(HO to 

"(")/ L( Hi). Hence, Aut L(H2), ~2, and e2 can be replaced by Aut M +, 
r o K o ~2, and r o K o e2 in the diagram (7). On the other hand, M + is not 
a full set of  states on L(H1) in general. [In fact, if {x , y }c  E2\E1, then x 
and y '  are incomparable in L( HO, while x <- y' in L( H2), hence re(x) > m(y') 
for no m ~ M+.] But 

J = { O I u { { x } ] x ~  W I u { { x , y } ] x ,  y c  W , x ~ y , { x , y } f ~ E 2 } u { J }  

is a full system of independent  sets of  H I (see Section 2.3), by (d), so that 
P+k) [mj  = ml l i e  J] is a full set of  states on L(H1) (see Section 2.4). Let 
us denote by M the o--convex envelope of  P+ w {mj},  i.e., of  M + w {mj}. 
Then 

Q = (L(H,) ,  M)  

is a quantum logic which realizes the given amalgam. This follows immedi- 
ately from (7), (9), and Lemmas A and B below [Lemma A implies Aut M § -~ 
Aut M, Lemma B implies that Aut Q-~{~'~ Aut L(H1)[~" is extendable to 
L(H2)}]. 

4. Lemma A. For every b ~ A u t  M, b(ms)=ms  and b sends P+ onto 
itself. 

Proof. Since P = P* w {ms} is the set of  all pure states of  M, b sends 
it onto itself. For each m c P+ there exist states rni, rn2, m3 in P such that 
all the states m, m,,  m2, m3 are distinct and 

1 1 1 1 i m + ~ m l  =~m2+~m3 

[see equation (5) in Section 2.7]. Since card J = 5, mj is the unique state 
in P which fails to satisfy it. Consequently b(ms) = mj. �9 

Lemma B. For every ~ 'eAut  L(H1) extendable to L(H2), 

ms o 7"-l = mj 
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Proof. This follows from (8). �9 

Trnkovd 

4. EMBEDDINGS INTO RIGID QUANTUM LOGICS AND 
THE PROOF OF THE MAIN THEOREM 

1. Let us say that a quantum logic Q --- (L, M) is rigid, Aut L ~  {1} and 
Aut M-~ {1} (hence Aut Q -  {1}), where {1} denotes the trivial group. Let 
us suppose that a given quantum logic Qo = (Lo, Mo) satisfies the assumption 
of the Main Theorem, i.e., L is atomistic and (a) ,  (/3), and (3') are satisfied. 
In this section we show that Qo can be embedded in a rigid quantum logic. 
We can suppose that Lo contains no blocks isomorphic to 22 and no clear 
block (see Section 2.l) isomorphic to 2 ~. This follows easily from the 
following lemma. 

Lemma. Let Qo(Lo, Mo) satisfy the requirements of the Main Theorem. 
Then it can be embedded into a quantum logic Q~ = (L~, M~) such that Q~ 
also satisfies the requirements of the Main Theorem and L~ does not contain 
22-blocks and clear 23-blocks. 

Proof The statement (3') avoids 22-blocks. If B is a clear 23-block with 
atoms x, y, and z, and z < v only for v = x', y', or 1, we add two new atoms, 
say w and t, and split z as z = w v t (hence, we add also coatoms w' and 
t' and z '=  w'^ t', x v t = y ' ^  w ' , . . . ) ,  so that B is enlarged to a 24-block. 
Every state m ~ M0 is extended in two states rnw and rn, by 

mw(w)=m(z)=mt(t), mw(t)=O=m,(w) 

Let us denote by h)o the o--convex envelope of {rnw, m, Im c Mo}. Then the 
restriction on Lo of all states in Mo is precisely Mo and a state p e h)o is a 
pure state in Mo iff p = rnw or p = m, for a pure state m in Mo. Clearly, (a)  
and (/3) from the Main Theorem are fulfilled for Mo. We show that also 
(3') is fulfilled. The new set of atoms A is equal to (A\{z})u  {w, t}. For 
a~A\{z},  put t ,=(sa)w and put gw=(sz)~=sz),=~, [since sz(z)=0,  
s~(w) = s~(t) = 0]. Then {go la ~ A} satisfies (3'). 

Repeating this procedure for all clear 23-blocks in Lo, we obtain 
(L1, M0.  �9 

2. By the lemma, we suppose that the given quantum logic Qo= 
(Lo, Mo) satisfies the requirements of the Main Theorem and Lo contains 
no 22-blocks and no clear 23-blocks. Let us recall that A denotes the set of 
all atoms of Lo, P the set of all pure states of Mo, and {slla E A} is as in 
(3'). We are going to construct a rigid quantum logic Q -- (L, M) containing 
Qo. We construct L analogously as in Kallus and Trnkovfi (1987): we find 
a suitable sufficiently large graph G = (V, E)  in IN (see Section 2.1) (for the 
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present construction, G has to be chosen in a rather special way; this will 
be described below) and a one-to-one map c of A into V such that 
c(A) = {c(a)Ia c A} is an independent set of G. Then L is a cr-orthomodular 
poset obtained from LoW L(G) by identifying 0 in Lo with 0 in L(G), 1 in 
L0 with 1 in L(G), and putting 

a <(c(a))' for all a c A 

[I.e., we add the elements a v c(a) and a'^ (c(a))' as in Kallus and Trnkovfi 
(1987). Informally, in the horizontal sum Lo�9 L(G), we join each a with 
c(a) by a 23-block.] Clearly, if Lo is a lattice or a o--complete or complete 
lattice, so is L. 

Let us suppose that Aut G-~ Aut L(G) is trivial. We prove that also 
Aut L is trivial, as in Kallus and Trnkovfi (1987). In fact, L0 contains no 
clear 23-blocks, while every vertex of G is an atom of L, which is contained 
only in clear 2a-blocks and there are at least two distinct clear blocks 
containing it. This property characterizes all the elements of L which are 
vertices of  L(G). Since any automorphism ~-: L ~  L has to preserve this 
property, i t maps the set of all vertices of L(G) onto itself, hence it maps 
L(G) onto itself and its domain-range restriction to L(G) is of the form 
L(y), where 7 ~ Aut G (see Section 2.2). Since Aut G-~ {1}, ~" is the identity 
on L(G). In particular, r(c(a)) = e(a), so that r(a) = a for all a ~ A. Since 
L0 is atomistic, ~- is the identity map, i.e., Aut L-~{1}. 

3. To define the set M of  states of  a quantum logic Q with the required 
properties is more delicate. For every pure state p ~ P on Lo we find a 
connected graph Gp = (Vp, Ep) in ~ such that: 

(a) card Vp > 5 + card P x A. 
(b) Gp contains an independent set Ip with card Ip > card A. 
(c) {Gp 1" P ~ P} is a stiff collection of graphs (in the sense that if Pl, 

P 2 ~ P  and there is an isomorphism 7 of Gp, into Gp2 , then 
necessarily p~ = p2 and 3' is the identity). 

(d) Every vertex of  each Gp lies on a 7-cycle (this assumption is not 
used for the embedding of a given quantum logic into a rigid one, 
but for putting together the constructions of Section 3 and 4). 

Concerning the existence of such a collection of  graphs, see the Appendix. 
We may suppose that V~, • Vp2 = O whenever p~ ~ P2. We put 

v=Uv , U 
p c P  p e p  

and use the graph G = (V, E) in the construction described in Section 2. 
We have also to specify how c(a) are chosen in V. Let us recall that 



1208 Trnkovd 

{sa [a ~ A} is the collection o f  pure states on Lo, which satisfies the require- 
ment  (7)  o f  the Main Theorem.  We choose  

x, = c(a) in V~o such that  if a, b c A, a ~ b, then {x~, Xb}~ E 

[ I f  s~ ~ Sb, then this is satisfied automatical ly  because no vertex o f  Vso is 
jo ined with any vertex o f  V~h; if sa = sb, then it is possible by (b).] 

Since {Gp Ip c P} is a stiff collection o f  connected  graphs,  G is a rigid 
graph,  so that  Aut  G = Aut  L = {1}, as shown in the previous section. 

4. I describe how pure states on L0 are extended on L. For  each p ~ P 
put  

R p = { Q } w { { x } l x ~  Vp } u { { x , y } [x , y~  Vp, x C y , { x , y } ~ : E , }  

and denote  by 

Mp-={prlr~Rp} 

the set o f  extensions o f  p defined as follows: 

Pr restricted to Lo is p 

pr restricted to Vp is the characteristic funct ion o f  r 

[i.e., pr(z) = 1 if z e  r; pr(z) = 0  for all z~ Vp\r] (10) 

pr(z) = �88 for  all z ~ V \ (  Vp w {x~ I a ~ a})  

pr(x,)  = 1 - max(] ,  �89 + p ( a ) ] )  whenever  a 6 A and p ~ Sa 

Lemma. For  every m ~ Mp, we have 

m( l) = p( l) for all l ~ Lo 

re(x) + re(y)_< 1 whenever  {x, y} e E 

m ( x ' )  >-p(a) for  all a ~ A 

s o  that each m c Mp is really a state on L. 

Proof The first two statements are evident;  let us show the last one. 
Let m = p r  with rcRp. I f  pcP \ { s~} ,  then p~(x ' )=max(3 , �89  > _ 
p ( a ) = p A a ) .  I f  p = aa, then p~(x')>-so(a) because s ~ ( a ) = 0  by (y)  in the 
Main Theorem.  �9 

Lemma. I f  p, q ~ P, p r q, then 

p~(z)<-�88 for  all z 6 V q a n d a l l r ~ R  e 
(11) 

p~(z) = �88 for  at least 5 elements z o f  Vq 
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Proof The first s t a t ement  fol lows i m m e d i a t e l y  f rom (10); the second  
fol lows f rom (10) and  the fact  that  card  Vp > 5 + c a r d  A [see (a) in Sect ion 
3.3], so that  card(Vp\{x~ l a ~ A}) > 5. �9 

5. Put  i t )  = Up~P Mp. 

Lemma. 1Q is a full set o f  states on L. 

Proof One has to show that  i f  l~, /2 ~ L and  l~ :~ 12, then  there  exists 
m c M such tha t  re( / l )  > re(/z). The  ver i f icat ion o f  this fact  is qui te  easy  in 
all  the  poss ib le  cases. However ,  many cases have to be d iscussed.  I omi t  
this  long and  t ed ious  d i scuss ion  and  show the s ta tement  only  in " the  wors t  
case"  when  I~ = a ' ^  x~ and  12 = b v xb for  some a, b ~ A, a ~ b. We need  (7 )  
o f  the M a i n  Theorem:  e i ther  so(b) < 1 or  sb(a) < 1. I f  so(b) < 1, we choose  
m = ( s a ) r  with r=4~.  T h e  m ( l O = l - [ m ( a ) + m ( x o ) ] = l - [ s o ( a ) + O ] = l ,  
while  

rn(12) = re(b) + rn(xb) = sa(b) + 1 - max(  3, �89 + so(b)] )  < 1 

I f  sb(a) < 1, we choose  m = (Sb)r with r = ~b. Then  

m(ll) = 1 - {sb(a) + l -- m a x ( l ,  �89 + Sb(a)]} 

= max(  3, �89 + sb(a)]) - sb(a) > 0 

while  m(12)=Sb(b)+O=O. �9 

6. The set hT/= (..Jp~p Mp is a full set o f  states on L. Let M be its 
o--convex envelope .  Since Mo is a o--convex enve lope  o f  P, by  (o~) o f  the 
Ma in  Theorem,  the res t r ic t ion  on Lo o f  any  m ~ M be longs  to M0. Thus,  

Q = (L, M )  is a q u a n t u m  logic  con ta in ing  Qo(Lo, Mo) as a sub log ic  

Lemma. f l  is p rec i se ly  the  set o f  all pu re  states o f  Q. 

Proof Let some m=pr, peP ,  r ERp be expressed  as m =  
ceml + (1 - c~)m2 for some 0 < c~ < 1 and  m~, m2 ~ M. Since Pr is an ex tens ion  
o f  a pure  state p, necessar i ly  the  res t r ic t ions  o f  ml and  o f  m2 on Lo are 
equal  to p, so that  necessa r i ly  bo th  m~ and  m2 are o--convex combina t ions  
o f  states f rom Mp. Since pr(z) = 1 for  all z c  r and  pr(Z) = 0  for all zc  Vp\r, 
necessar i ly  ml = m2 = pr. Hence ,  every e l emen t  o f  M is a pure  state of  M. 
Since M is the  set o f  all  o--convex c o m b i n a t i o n s  o f  e lements  o f  M, no 
e lement  o f  M \ M  is a pu re  state o f  M. �9 

7. To p rove  that  Q=(L,  M) is r igid,  we have to show Aut  M = { 1 } .  
Thus,  let b be  in Aut  M ;  we are going to p rove  tha t  b is the  ident i ty .  Since 
M is the set o f  all pure  state o f  M, b maps  hT/ onto  itself. Fo r  every p e P 
and  r c Rp, let us find p r  ~ p and  ~ R F such that  

b(p~)=(p~)~ 
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0 x 
in the notation of (10). Let us write Po, P~, Px.y for p~, and p~, p ; ,  p~i y for 
p~- if r = ~ ,  {x}, {x, y}. For every p ~ P and every x, y ~ Vp, x ~ y, {x, y}e~ Ep, 
we have 

�89189 =�89 y+�89 

This equation has to be preserved by b, so we obtain 

1 x 1 y 1 x , y '  jr_ 1 0 ~P;+~P~ =~Px, y ~P~ (12) 

8. Proposition. For every p e P, ~ = ~3. 

Proof Let us suppose the contrary, i.e., there exists p ~ P such that 
# Q; choose z e ~b ~ Vpo. This p and z will be fixed during the whole 

proof, which is divided into several lemmas. 

Lemma. p~ = pO = py = pX.y for all x, y c Vp, x # y, {x, y} ~ Ep. 

Proof Denote 
1 x . j _ l  y 1 x , y - - 1  0 

ml =~p;-~p~,  ma=~px,yt~p6 

By (12), m l = m 2 ,  Since z e ~ ,  we have p ~ ( z ) = l ,  so that m2(z)>-�89 If 
1 1 1 1 1 pX~pO~py ,  then ml (z ) - - -~ .~+~.~=~,  by (11). Hence either pX=pO or 

py =pO. Let us suppose that pX =pO. We prove that also pY =pO. ifpY ~pX = 
pO, then ml(v)>-�89 �9 i for at least five elements v of ~p, by (11) again. Since 
the same has to be true also for rn2 and card({x, y} w 05) -< 4, necessarily pX.y 
is also different from pO=p:,. Then, for v e  V~ ml(v)>-�89 if[ re{Y} and 
mz(v) >-�89 iff v ~ 4~. Consequently, {~} = q~, so that p~- = pO. This is a contradic- 
tion, because Px~Po and b is one-to-one. Thus, pY =pX =pO. If pX'Y ~p0,  

1 then m2(v)>-�89 for at least five elements v of Vpo, but rn~(v)=0 except, 
possibly, four elements of Vpo. This is a contradiction, hence pX,y is also 
equal to pO. �9 

Lemma. There exist x, y ~ Vp, x ~ y, {x, y}~ Ep such that 

z ~ { ;} ,  z ~ {y}, z ~ {x, y} 

Proof Since p~ =pY =pX'Y =p0 and Gp =(Vp, Ep) is in ~ ,  we can pro- 
ceed as in the proof  of Section 2.7. �9 

Now, we can finish easily the proof of the Proposition, as Section 2.7. 
Since pO = pX = py = pX,y and z is in all ~, {2}, {37}, and {x, y}, the elements 
in (12) cannot be all different, which is a contradiction. 

9. As a consequence of Proposition 8, we obtain that, for all p ~ P, x, 
y 6  Vp, x # y ,  {x ,y}~Ep,  we have 
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In fact, 4~ = O is just the statement of Proposition 8. The statements {Y} # O, 
{)7} # 0 ,  {x, y} # O follow also from Proposition 8, applied to b -~ c Aut M. 

Let p e P be given. Choose ff c {Y}. Since p~(ff) = 1, necessarily [by (1 l) 
and (12)], p~ =p~'Y and ~ e {x, y}. Analogously, choosing f ie {fi}, we obtain 
that pY = pX,y and )7 e {x, y}. Since pX = p~'Y = pY but p~ # p~, necessarily 
{~}# {)7}; hence, we can choose ~ #)7; since card{x, y} _< 2, necessarily 
{x, y} = {2, )7}. Then (11) and (12) imply that pO = p~,y [otherwise po~(V) = 

1 x A  1 y for at least five elements of  Vp,,,, while ~p~-~p~ would have the values on 
Vp~., equal to 0 except possibly four elements]. Hence pO= p~ =py =p~,,y 
and, since ~b = q~, we have 

{Y} = {if}, {fi}, {x, y} = {~, 37} 

We conclude that every b c Aut M determines uniquely (1) a map of P into 
P given by p ,~ po (=pX for all x e Vp), and (2) a map of each Vp into Vpo 
given by x ~.~ :~, such that, if x, y ~ Vp, x # y, and {x, y} r Ep, th.en {2, )7} ~ Epo 
and 

b(po)=pO, b(px)=pO, b(py)=pO b(px.y)= o , P x , :  

Since b - -~  Aut M determines just the inverse maps, they all have to be 
one-to-one and 

x ~ 

is an isomorphism of  Gp( Vp, Ep) onto Gpo = ( Vpo, Epo). Since { Gp IP ~ P} is 
a stiff collection of graphs, necessarily 

p=pO for all p e P  and x ~ ff is the identity of Gp 

Thus, v: M ~ M  is the identity. �9 

10. The proof  of the Main Theorem is already quite simple. Let H, 
H1, /-/2 be graphs as Section 3.1; let {Gp IP ~ P} be the collection of graphs 
as in Section 4. Choose q e P and define 

G~ = ( V o u W, Eq w E2) 

(where we suppose Vp c~ W = 4~ for all p ~ P). Choose all x, with s, = q in 
Vq (never in W!). Define L by means of{Gp IP ~ P\{q}} u {G1q} as in Section 
4.2. Since every vertex of  each Gp lies on a 7-cycle while H1 does not contain 
any 7-cycle, and ~- e Aut L maps V = [-Jr~p Vp itself. Hence Aut L--~ Aut H~. 
To define the set M of states, use the collection {Gp IP ~ P\{q}} w {G 2} and 
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proceed as in Sections 4.2-4.5; restrict only all these states to L (as in 
Section 4.3) and add the state qs defined such that 

qs restricted to Lo is q 

qj restricted to Vq W is the characteristic function of J 

qj is defined on Vp, p r q, as in (10) 

and form the o'-convex envelope. 
In the investigation of the state automorphisms b ~ Aut M, first prove 

that 

b( qs ) = qs 

(In fact, qs is the unique pure state of M, for which there do not exist pure 
states m~, m2, m3 s u c h  that all four states qs, ml, mE, m3 are distinct and 

�89 +�89 1 1 = gm 2 + ~ m  3 

because card J >- 5.) Then, proceeding as in Sections 4.7-4.9, we prove that 
every b ~ Aut M defines maps 

P o n t o P ,  b y p  ~ ,  pO 

Wp onto Wvo, by x ~-~ )~ 

where Wp = Vp i f p  # q, Wq = V o u W. Since {Gp [p ~ P} is a stiff collection, 
every vertex of each Gp lies on a 7-cycle, while HE contains no 7-cycle; we 
conclude that 

P = P ~  for all p ~ P  

x = ~  for all x ~ V p  

x ~-~ )7, x e W, has to be an isomorphism of H2 onto itself 

This gives Aut M - Aut/-/2, Aut Q - Aut H 1 ~ Aut HE, as in Section 3. 

R e m a r k  As can be seen from the construction, Q = (L, M)  is not 
strongly full [in the sense that (m(ll)  = 1 ~ m(12) = 1) ~ l~ <- 12] whenever 
Qo = (Lo, Mo) is strongly full. I do not know whether this strengthening of 
the Main Theorem is valid. 

A P P E N D I X :  G R A P H  C O N S T R U C T I O N S  

I. Let subgroups G~, G2 of a group G be given. I show how graphs 
H = ( W ,  E),  H~ = (W, El), H2=  (W, E2), and Jc_ W, which satisfy (a)-(e)  
in Section 3.1 are constructed. 
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By Trnkovfi (1986), there exists a directed graph (X, R) (i.e., R c X x 
X)  and R1, R 2 -  R, such that card R -> 5 and: 

(a )  (X, R) is a connected graph without loops [i.e., never (x, x) E R], 
and there is an isomorphism ~ of Aut(X, R) onto G. 

(/3) All the r c Aut(X, R) such that (x, y)  ~ R i iff (~-(x), r (y) )  c R i form 
a group, say Aut(X, R, Ri), which is sent by r onto Gi. 

We use the undirected graph K shown in Figure 1. The graph K consists 
of  two complete 8-cycles plus one 8-cycle lacking the edge {a, b}; and two 
complete 6-cycles plus one 6-cycle lacking the edge {d, c}; the named vertices 
x, y will play a special role. We obtain H = ( W, E)  from (X, R) such that 
each arrow r = (x, y) c R is replaced by a copy Kr of  the graph K. In further 
detail, in the disjoint union U r~R Kr we identify 

x in Kr with x in K~ whenever Irl(r) -- ~'l(~) 

x in Kr with y in K~ whenever ~rl(r) = ~r2(r) 

y in Kr with y in K~ whenever ~r2(r) = rr2(r) = ~r2(F) 

where ~rl(a, b) = a, "n'2(a , b )  = b. We may suppose that X__q W; X is just 
the set of all "gluing points' in the above 'arrow construction." In this sense, 
every ~-~ Aut(X, R) can be extended (uniquely) to f c Aut H:  f sends the 
whole copy Kr "identically" onto the copy K~, where r = ( x , y ) ,  ~= 
( z (x ) ,  r (y)) .  Conversely, every ~ : s A u t H  is the extension of some r e  
Aut(X, R). [In fact, ~: has to send z of each copy Kr on the point z of K~ 
because z is the unique point which lies in an 8-cycle and has degree equal 
to 4; then u is the unique point which lies on a 8-cycle and with degree 
equal to 3, this implies that ~: has to send the points u on the points u, 
hence the whole 8-cycle of  Kr "identically" on its copy in some K~; similar 

d 

/ 
14 

b 
. . . .  

Y 

Fig. 1 
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reasoning show that s must map the whole Kr "identically" onto the copy 
k~--hence the restriction of ~:~ Aut H to X is an element of Aut(X, R).] 
Consequently, Aut H = Aut(X, R). 

The graph Hi( W, El) is obtained from H = (W, E) such that we add 
the edge {a, b} to all the copies Kr with r ~ RI. Then E c E~ and Aut HI - 
Aut(X, R, R~) -~ G~. The graph H2 = ( W, E2) is obtained from H = ( W, E) 
such that we add the edge {a, b} to all the copies Kr, r c R, and we add 
also the edge {e, d} to all those copies Kr with r 6 R 2 .  Then E~ c_ E2 and 
Aut H2 = Aut(X, R, R2)  ----- G 2. Finally, J consists of all c and d of the copies 
Kr with r ~ R 2 and of those vertices a and b which are in the copies Kr 
with re  R\R1; moreover, for J to be large enough, we add the vertices z 
of all the copies Kr. The graphs H, H1, /-/2 contain no 7-cycle. 

II. The collection {Gp [p ~ P} with the properties (a)-(d)  of Section 4.3 
can be taken from Pultr and Trnkov~i (1980), where much stronger results 
are presented. 
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